
So what is subclassing? Well,
the answer depends on the

context of the question. It means
different things to different
people. Let’s look at definitions
from some industry gurus.

Firstly Bjarne Stroustrup, the
guy who designed the C++
programming language, in his book
The C++ Programming Language,
Second Edition, says: “A base class
is sometimes called a superclass
and a derived class a subclass.” He
goes on to mention that this is a
confusing definition given that “an
object of a derived class has its
base class as a subobject and also
that a derived class is larger than
its base class in the sense that it
holds more data and provides
more functions.” From this we
learn that in the OOP world,
subclassing can be taken to mean
deriving new objects.

As for Charles Petzold, in
Programming Windows 3.1 in a
paragraph discussing scroll bars
says “the window procedure for
the scroll bar controls is some-
where inside Windows. However,
you can obtain the address of this
window procedure by a call
to GetWindowLong using the
GWL_WNDPROC identifier as a parame-
ter. Moreover, you can set a new
window procedure for the scroll
bars by calling SetWindowLong.
This technique, called ‘window
subclassing’ is very powerful.”

So a subclass is a derived object,
but window subclassing (or more
correctly, window instance
subclassing, as there is also a
concept of global window sub-
classing) involves changing the
functionality of a window/control.
The reason we get (at least) two
definitions is that the base term
class is an OOP term, but it is also
the term Microsoft chose to apply
to a set of information that is
required when creating a window.
Most important of this information
is the window procedure, the
subroutine that responds to

messages sent to the window,
dictating how the window will
appear and function.

With tools such as Delphi, the
window procedure is tucked away
under the plush carpet of the class
library, but Delphi does not
prevent us accessing it directly.

Typically when people use the
term subclassing loosely, it ends
up meaning a combination of the
two ideas mentioned above: chang-
ing the behaviour of a particular
window instance by deriving a new
object class. This ends up being the
most convenient way of changing
the functionality accessed by the
window procedure associated with
the window class of the window.

So with all that borne in mind
and with Delphi both giving us high
level encapsulations of all things
Windows-based and also allowing
us to get to the low-level nuts and
bolts of Windows, what options do
we have for subclassing a Window?
The answer is several.

To explore them all, let’s take a
trivial task and implement the
relevant subclassing in as many dif-
ferent ways as possible. The task
will be writing to the caption of a
label as characters are typed on
the keyboard when the form in a
simple application has the focus, in
other words changing the default
functionality that occurs when the
form window receives a wm_Char
message. However, before we start
it will be useful to view the course
a message takes as it is digested
through a Delphi application.

Message Execution Flow
When Windows has a message that
needs to be delivered to an applica-
tion, it normally places it in the
application’s message queue

(which defaults to a capacity of
eight messages). At least this is the
case if the message was sent using
PostMessage. If SendMessage, or the
Delphi method Perform, were used
instead, the message is passed
directly to the appropriate window
procedure by Windows/Delphi.

Messages which are sent using
PostMessage, or which manage to
get into the application message
queue in more elaborate ways, are
called queued messages. Those
that go directly to the window
procedure are unqueued messages.

The mechanism by which
queued messages get delivered to
the appropriate window in the
program is wrapped up in an
Application object method called
ProcessMessages, normally called
from Application.HandleMessage
(itself called repetitively from
Application.Run), but is also called
by the yielding method
Application.ProcessMessages .

Inside ProcessMessages, when a
message is plucked from the
queue, it is given to the Application
object’s user-supplied OnMessage
handler if one exists, which has the
option of terminating the
message’s existence, if it deems it
appropriate. If the message
survives this first hurdle, it is sent
to the appropriate window
procedure using the Windows API
function DispatchMessage.

The window procedure of the
form or control (or any object
descended from TWinControl) that
receives the message is a small
stub of code which calls the
non-virtual method MainWndProc,
which in turn passes the message
straight onto the virtual method
WndProc, originally defined in the
TControl object. Each object that

Subclassing Windows
by Brian Long

➤ Our all-singing, all-dancing example!

10 The Delphi Magazine Issue 2

overrides WndProc in the Visual
Component Library adds addi-
tional default handling. It is in this
default handling that the message
may again get swallowed. If it
makes it through this point, the
message gets passed to the TObject
method Dispatch, which invokes
the dynamic method dispatching
system to allow any specific
message handlers (defined using
the message keyword) that have
been implemented to be called.
Pre-written message handlers in
the VCL have the task of calling any
event handlers that have been
written at relevant points.

With that meandering tale
finished, it’s on with the show.

Method 1:
The OnMessage Event
If we do this chronologically, the
earliest place we can encroach
upon the default message handling
scheme (for queued messages) is
by defining an event handler for the
Application object’s OnMessage
event. Unfortunately we can’t ask
the Delphi environment to manu-
facture an OnMessage handler as the
Application object does not have a
visual representation; we have to
do it manually, as shown in Listing
1 in the form’s OnCreate handler,
FormCreate.

The event handler, MsgHandler,
will be triggered as soon as a
message is picked from the
application queue inside
Application.ProcessMessage, regar-
dless of the target window. So in
the handler, we must check that
the target window handle of the
message matches our form’s
Handle property and that the mes-
sage is a wm_Char message and then
do what we want to do: determine
what key was pressed and add it to
the label’s caption.

Look in the Delphi help file for
more on the OnMessage event.

Method 2:
The Windows SDK Approach
If you say “subclass” to an experi-
enced Windows SDK programmer,
there is a strong possibility that, in
a fashion usually associated with
Pavlov’s dogs, they will involuntar-
ily say “SetWindowLong”. In the

world of procedural API program-
ming, window instance subclassing
is done using SetWindowLong to
replace the current window
procedure with another one of our
choosing. Because of implementa-
tion issues of object methods, the
new window procedure needs to
be a global function, not a method,
although we’ll see how to
overcome this in the next section.

Changing the window procedure
is better than using an OnMessage
handler since a window procedure
deals with all messages, no matter
how they are sent. The OnMessage
event only reacts to queued
messages and so the window
procedure is the earliest place in
the scheme of things that is
guaranteed to see every message.

The example in Listing 2 replaces
the form’s window procedure with
a global routine called NewWndProc.
The parameters passed into the
window procedure allow us to
identify the target window (fairly
redundant in this application since
this window procedure is associ-
ated with only one window;
however you may see fit at some
point to write one window proce-
dure to be associated with several
windows), the message number
and the two additional pieces of
information associated with the
message.

In the form’s creation event,
SetWindowLong is called with the
parameter gwl_WndProc to specify
that we wish to change a window
procedure and the form’s window
handle to indicate which window is
to be changed. In addition, the
address of our replacement
window procedure, typecast into a
Longint, is also passed along. The
return value from SetWindowLong is
the address of the old window
procedure: we need to call this
from our replacement window
procedure so we save this address.

In the new window procedure,
we check if the message is wm_Char
– if it is we update the label, if it isn’t
we invoke default functionality by
using CallWindowProc to call the
original window procedure,
passing the same parameters as we
were given. Notice that in the
form’s OnClose event handler,
FormClose, we tidy up by setting the
window procedure back to the
original routine that we saved.

Look in the Windows API help file
for more on SetWindowLong.

Method 3: Windows SDK ++
In the section above on the course
taken by a message through an
application, I mentioned that the
window procedure for all forms
was a small stub of code which
calls the MainWndProc method. The

unit Subu1;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls;
type
 TWndProc = function(HWindow: HWND; Message: Word;
 WParam: Word; LParam: Longint): Longint;
 TForm1 = class(TForm)
 Label1: TLabel;
 procedure FormCreate(Sender: TObject);
 private { Private declarations }
 public { Public declarations }
 procedure MsgHandler(var Msg: TMsg; var Handled: Boolean);
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.MsgHandler(var Msg: TMsg; var Handled: Boolean);
begin
 if (Msg.HWnd = Handle) and (Msg.Message = wm_Char) then
 Label1.Caption := Label1.Caption + Chr(Msg.WParam);
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnMessage := MsgHandler;
end;
end.

➤ Listing 1

July 1995 The Delphi Magazine 11

reason MainWndProc can’t be set as
the window procedure directly is
that it is a method. Windows
expects to be given a function
which takes a particular set of four
parameters.

The implementation of methods
in the Object Pascal language
causes them to have an additional
hidden parameter, Self, used to
identify the currently executing
object instance, which would
cause any attempt at parameter
passing by Windows to become
unsynchronised. That is why we
have to supply a global routine.
However, we can work around this
limitation using the function
MakeObjectInstance and its partner
FreeObjectInstance.

MakeObjectInstance takes one
parameter, the name of a method
that you wish to use as a window
procedure, which needs to be
defined as taking a TMessage
parameter, a record holding mes-
sage information. It returns a
pointer to a small block of code
which can be given to
SetWindowLong and which will
invoke your window procedure
method. When you are done with
this window procedure, be sure to
call FreeObjectInstance to
deallocate this code block.

Both MakeObjectInstance and
FreeObjectInstance were present in
Borland Pascal 7, but weren’t docu-
mented. In Delphi the Component
Writer’s Guide tells us what we can
use them for. They can be seen as
parallels to the Windows API func-
tions MakeProcInstance and
FreeProcInstance which deal with
procedure instances: small chunks
of code that Windows can safely
call, which in turn safely call some
exported routine in your code.
These functions generate code
snippets to safely allow Windows
to indirectly call object methods.

In Listing 3, MakeObjectInstance is
used to turn NewWndProc, a form
method, into the form’s window
procedure. In the form’s OnClose
event handler, the window
procedure is set back to its original
value and our window procedure
calling stub, which is returned
back from SetWindowLong, is freed
with FreeObjectInstance.

unit Subu3;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 Label1: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 private { Private declarations }
 public { Public declarations }
 FOldWndProc: TFarProc;
 procedure NewWndProc(var Message: TMessage);
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.NewWndProc(var Message: TMessage);
begin
 with Message do begin
 Result := 0;
 if Msg = wm_Char then
 Label1.Caption := Label1.Caption + Chr(WParam)
 else
 Result := CallWindowProc(FOldWndProc, Handle, Msg, WParam, LParam);
 end;
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 FOldWndProc := TFarProc(SetWindowLong(Handle, gwl_WndProc,
 Longint(MakeObjectInstance(NewWndProc))));
end;
procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
 FreeObjectInstance(
 Pointer(SetWindowLong(Handle, gwl_WndProc, LongInt(FOldWndProc))));
end;
end.

➤ Listing 3

unit Subu2;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls;
type
 TForm1 = class(TForm)
 Label1: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure FormClose(Sender: TObject; var Action: TCloseAction);
 private { Private declarations }
 public { Public declarations }
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
var OldWndProc: TFarProc;
function NewWndProc(HWindow: HWND; Message: Word;
 WParam: Word; LParam: Longint): Longint; export;
begin
 Result := 0;
 if Message = wm_Char then
 Form1.Label1.Caption := Form1.Label1.Caption + Chr(WParam)
 else
 Result := CallWindowProc(OldWndProc, HWindow, Message, WParam, LParam);
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 OldWndProc := TFarProc(SetWindowLong(Handle, gwl_WndProc,
 LongInt(@NewWndProc)));
end;
procedure TForm1.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 SetWindowLong(Handle, gwl_WndProc, LongInt(@OldWndProc))
end;
end.

➤ Listing 2

12 The Delphi Magazine Issue 2

Method 4: Virtual Window
Procedure Method
Having gone to all the trouble of
finding how we can do what is
essentially passing a method into
SetWindowLong, we will now see that
there was no real need to worry
about it. As mentioned previously,
there is a virtual method that acts
as a window procedure method
already waiting for us to override
it. So we can now dispense with
SetWindowLong, MakeObjectInstance
and FreeObjectInstance.

The code in Listing 4 is pretty
straightforward. We override the
virtual WndProc method and inside
it we update the label if a wm_Char
message is received, otherwise we
call upon the default WndProc
functionality inherited from the
TForm object.

Method 5: Message Handlers
In all the cases so far, we have
needed to check the message that
comes through to ensure it
matches the one we are interested
in trapping. There is an elegant
construct which allows us to
forego these comparisons. The
message keyword, when used in
conjunction with a method defini-
tion and an appropriate message
identifier, allows us to write a
specific message handler. The han-
dler needs to take either a generic
TMessage record as a parameter, or
one of the specific message
records defined in the Messages
unit, or alternatively a user-defined
message record if this is not a
standard message.

In our case we are changing the
behaviour of a wm_Char message so
the WMChar method uses a specific
TWMChar record type. To complete
the declaration of the method in
the class definition, the message
keyword is followed by the wm_Char
identifier.

Although this construct allows
us to conveniently write a specific
message handling method inside
the target window class definition,
there is a down side to it. Despite
the implementation being mostly
in hand-optimised assembler, the
dynamic method dispatching
scheme used in TObject.Dispatch is
slower than the virtual method

unit Subu6;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;
type
 TWndProc = function(HWindow: HWND; Message: Word; WParam: Word;
 LParam: Longint): Longint;
 TForm1 = class(TForm)
 Label1: TLabel;
 procedure FormKeyPress(Sender: TObject; var Key: Char);
 private { Private declarations }
 public { Public declarations }
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormKeyPress(Sender: TObject; var Key: Char);
begin
 Label1.Caption := Label1.Caption + Key;
end;
end.

➤ Listing 6

unit Subu4;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;
type
 TWndProc = function(HWindow: HWND; Message: Word; WParam: Word;
 LParam: Longint): Longint;
 TForm1 = class(TForm)
 Label1: TLabel;
 private { Private declarations }
 public { Public declarations }
 procedure WndProc(var Message: TMessage); override;
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.WndProc(var Message: TMessage);
begin
 if Message.Msg = wm_Char then
 Label1.Caption := Label1.Caption + Chr(Message.WParam)
 else
 inherited WndProc(Message);
end;
end.

➤ Listing 4

unit Subu5;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, StdCtrls;
type
 TWndProc = function(HWindow: HWND; Message: Word; WParam: Word;
 LParam: Longint): Longint;
 TForm1 = class(TForm)
 Label1: TLabel;
 private { Private declarations }
 public { Public declarations }
 procedure WMChar(var Msg: TWMChar); message wm_Char;
 end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.WMChar(var Msg: TWMChar);
begin
 Label1.Caption := Label1.Caption + Chr(Msg.CharCode);
end;
end.

➤ Listing 5

July 1995 The Delphi Magazine 13

dispatching scheme, as discussed
in Chapter 2 of the Component
Writer’s Guide.

An object’s virtual method table
has pointers to all virtual methods,
be they inherited from ancestor
objects or new ones. The dynamic
method list on the other hand is
much more space conservative
(necessary since an object can
amass message handlers for many
Windows messages) and only
holds pointers to new methods
introduced in the current object.
This means that to find the relevant
address to jump to, Dispatch may
need to search through the
dispatch lists of all the object’s an-
cestors. Because of this, if speed is
key to your application, you would
do better to use one of the previous
window procedure or message
event approaches.

More information on creating
message handlers can be found in
Chapter 7 of the Component
Writer’s Guide, or alternatively in
the Component Writer’s help file
by searching for the messages
section and the topic “Handling
messages.”

Method 6: Individual Events
After all that, for this particular
scenario there is a much simpler
and more familiar approach. A
Delphi event handler can be manu-
factured using the Object Inspec-
tor’s Events page for the OnKeyPress
event for the form in the normal
way, as shown in Listing 6. Inside
the VCL, the OnKeyPress event’s as-
sociated routine (or perhaps, more
accurately, I should say the
method pointed to by the
OnKeyPress pointer property since
the events listed in the Object
Inspector are nothing more than
properties for storing method
addresses in) is called indirectly
from a wm_Char message handler
method in the TWinControl
ancestor object of the TForm.

Conclusions
So, all this goes to show that with
an advanced product like Delphi,
which a lot of people treat like a
clever 4GL, but which of course is
really a very capable 3GL in a most
sumptuous wrapping, there are
more ways than one to skin the
proverbial cat. In this particular
example of window instance

subclassing, we have six different
approaches.

We can supply a routine that gets
called for all queued messages
targeted to any window in the
application, though this will miss
any nonqueued messages. There
are two ways of writing traditional
window procedure replacements,
using either a global routine or an
object method in conjunction with
a Windows API function. Then
there is the already present virtual
window procedure method and
also the elegant message dispatch
methods. Last but by no means
least is the standard Delphi event
model. And that, I think, is plenty
for one day.

Note: Brian’s examples are on the
free disk with this issue, as Delphi
projects called SUB1 to SUB6.

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

	Message Execution Flow
	Method 1: The OnMessage Event
	Method 2: The Windows SDK Approach
	Method 3: Windows SDK ++
	Method 4: Virtual Windon Procedure Method
	Method 5: Message Handlers
	Method 6: Individual Events
	Conclusions

